
CROSSTALK The Journal of Defense Software Engineering 21August 1998

The distribution of faults
within any particular software
product is not uniform. For

example, 47 percent of the faults found
by users of OS/370 were associated
with only 4 percent of the modules [1].
Therefore, what is needed are metrics
that can be applied to detailed designs
to predict which modules will be fault-
prone. Then, instead of wasting money
detecting and correcting faults during
implementation and integration, those
modules can be redesigned before cod-
ing commences.

Metrics of this kind can also be
applied to existing software, to predict
which modules are likely to contain
residual faults when the software is
installed. Residual faults can have two
major adverse consequences: run-time
failures, which prevent users from mak-
ing optimal use of the software; and
time that has to be spent on corrective
maintenance. If a fault is detected in an
existing module that has been flagged as
fault-prone, it may turn out cheaper to
discard, redesign, and recode the mod-
ule than to attempt to fix one fault in a
module that probably contains many
other faults.

The CDM is a metric that accom-
plishes this objective. It has outper-
formed a wide variety of other metrics,
both classical and object-oriented, in
predicting run-time failures and re-
sidual faults [2]. In this article, we com-
pare the performance of CDM with
other metrics on four real-world case
studies: run-time failure data for a CO-

each module. We then chose an objec-
tive measure of software quality, for
example, the number of faults detected
in a module after installation. Next, we
computed the Spearman rank correla-
tion [2] between the LOC in each mod-
ule and the number of faults in each
module. A high correlation would indi-
cate that modules with many LOC also
have many faults, i.e., a high correlation
would mean that lines of code is a good
predictor of faults.

The Metrics in Our Case
Studies
We compared a number of different
metrics in each case study, including

Metrics for Predicting Run-Time Failures and
Maintenance Effort: Four Case Studies

Aaron B. Binkley and Stephen R. Schach
Vanderbilt University

It is important to have the ability to predict which modules in a software product are likely
to be fault-prone so that corrective action can be taken. A number of metrics have been put
forward to predict faults and failures, including the coupling dependency metric (CDM). In
the four case studies presented here, CDM outperformed a wide variety of competing metrics.
The case studies were implemented in COBOL, C, C++, and Java and used both classical
and object-oriented methods. This article is a summary of research conclusions that can be
examined in more detail by consulting the references at the end of this article.

This is a brief description of the metrics mentioned in this article. For detailed information on all the
metrics in our four case studies, consult the Internet address listed in [3].

Lines of Code. We computed lines of code as the number of noncomment source statements.
Cyclomatic Complexity. The cyclomatic complexity metric measures the number of branches in a
module.
Fan-in/fan-out. For any module M, the fan-in of M is the count of the modules that call M plus the
number of global data elements. The fan-out of M is the count of modules called by M plus the number
of global data elements altered by M.
Ordinal Scale Coupling. Level numbers are assigned to classical coupling categories. Specifically,
level numbers 1 through 5 are assigned to data coupling, stamp coupling, control coupling, common
coupling, and content coupling, respectively. The level numbers corresponding to each instance of
coupling in a given module are then summed.
Response for a Class. The response set of a class is the set of methods that can potentially be
executed in response to a message received by an object of that class. The response for a class (RFC) is
then the number of methods in its response set.
Coupling Dependency Metric. The coupling dependency metric (CDM) is the sum of three
components: a measure of the extent to which a program relies on its declarations remaining
unchanged (referential dependency); a measure of the extent to which a program relies on its internal
organization remaining unchanged (structural dependency); and a measure of the vulnerability of data
elements in one module to change by other modules (data integrity dependency).

BOL registration system, maintenance
data for a C text-processing utility,
maintenance data for a C++ patient
collaborative care system, and mainte-
nance data for a Java electronic file
transfer facility.

Description of Method
We followed the same procedure in each
of the four case studies. We chose a set of
metrics that would presumably be good
predictors of run-time failures or correc-
tive maintenance for that case study. We
then applied each metric in the set to
each module in the case study. For ex-
ample, one of the metrics was lines of
code (LOC), so we counted the LOC in



22 CROSSTALK The Journal of Defense Software Engineering August 1998

Measures and Metrics

widely used quality metrics like
cyclomatic complexity, object-oriented
metrics like the depth of the inheritance
tree (for the two object-oriented case
studies), and CDM. The metrics com-
pared in the four case studies are de-
scribed in detail in [3]. The sidebar on
page 21 provides a brief overview of the
metrics mentioned in this article.

The OASIS Course Registration
System
OASIS [3] is a university course registra-
tion system developed by Vanderbilt
Administrative Systems. It comprises
290 COBOL modules that total ap-
proximately 80,000 lines of code. Run-
ning on a VAX series computer, the
software allows multiple interactive
student registration sessions to execute
concurrently. Communication between
the sessions is accomplished through 18
shared resources; namely, disk files and
shared memory segments.

During registration periods, a run-
time log is kept that records all OASIS
events, including registration transac-
tions and system-trapped failures. The
data available for this case study con-
sisted of the source code for OASIS and
the run-time log for the software prod-
uct, as recorded during a single registra-
tion period. For each failure, we noted
which of the 18 shared resources was
involved. We then attributed the failure
to any module with access to that re-
source. Then, as previously explained,
for each metric we computed the
Spearman rank correlation between the
value of that metric applied to each
module and the number of failures
attributed to that module. The results
are shown in Table 1.

The three metrics most highly corre-
lated with the number of run-time fail-
ures (the three best predictors of run-
time failures) were CDM, ordinal scale
coupling, and fan-in times fan-out.
These are all coupling-based metrics;
intramodule metrics like lines of code
and cyclomatic complexity fared poorly
as predictors of run-time failures.

The ffortid Text Formatting Utility
Our second case study is ffortid [3], a
text formatting utility for UNIX used to

Medical Center [3]. Designed using
object-oriented methods, it is imple-
mented in C++. The product defines
113 distinct classes and consists of 312
modules that total approximately
82,000 lines of code.

Our study examined data from a
maintenance period beginning with the
original installation of the product and
ending with the product’s second re-
lease. During this period, little or no
enhancement was made to the product.
Instead, maintenance consisted mostly
of modifications made to correct re-
sidual faults. The configuration control
tool used in the development and
maintenance of the product provides
accurate statistics regarding the modifi-
cations made to the source files over
time. For our study, we were therefore
able to compute the total number of
changes (additions, deletions, or modi-
fications of lines of code) made to each
class as well as the total number of
times a class was revised.

The results appear in Table 1.
Again, CDM outperformed the other
predictors of software quality, followed
by number of clients and fan-in. In this
case study, coupling-based metrics out-
performed both intramodule metrics
and inheritance-based (object-oriented)
metrics.

The Electronic File Transfer
Facility
Our fourth case study was with a pro-
gram called submit, an electronic file
transfer facility used in Vanderbilt Uni-
versity engineering courses to allow
students to submit class assignments

Table 1. Results of the case studies showing which metrics were the best predictors of run-time failures
and corrective maintenance.

tcudorPerawtfoS noitatnemelpmI
egaugnaL

etamixorppA
eziS

ataD
dezylanA

scirteM
derapmoC

srotciderPeerhTtseB

metsysnoitartsigeR LOBOC COL000,08 emit-nuR
seruliaf

9 MDC.1
gnilpuocelacslanidrO.2

tuo-nafsemitni-naF.3

ytilitugnissecorp-txeT C COL000,3 evitcerroC
ecnanetniam

71 ycnednepedlaitnerefeR.1
MDC.2

tuo-naF.3

evitaroballoctneitaP
metsyserac

++C COL000,28 evitcerroC
ecnanetniam

11 MDC.1
stneilcforebmuN.2

ni-naF.3

elifcinortcelE
ytilicafrefsnart

avaJ COL000,6 evitcerroC
ecnanetniam

41 MDC.1
ni-naF.2

CFR.3

format Arabic, Hebrew, and Persian text.
It converts ditroff output so that desig-
nated right-to-left fonts are properly
reversed, letters are properly stretched,
and slantable fonts are printed on a
slanted base line. The ffortid utility is
written in C. It is composed of nine
modules that consist of 34 functions that
total approximately 3,000 lines of code.

Our study examined data from a
maintenance period in which eight
distinct enhancements were made to
ffortid. The required changes varied in
magnitude from a simple command
line option change to a more complex
extension that would allow slanted
fonts. During the maintenance period,
the developer recorded daily effort
statistics including time spent working
on the maintenance project, descrip-
tions of the faults encountered as a
consequence of enhancement activities,
time spent correcting these faults, and
the functions to which the time and
faults should be attributed. From this
information we were able to compute
six corrective maintenance measures.
The results were similar for all six mea-
sures; for brevity, we report on just one
here; namely, the time spent perform-
ing corrective maintenance.

Table 1 shows that the best three
predictors were referential dependency (a
component of CDM), CDM, and fan-
out. Again, coupling-based metrics out-
performed intramodule metrics.

The Collaborative Care System
Our third case study is a comprehensive
patient care management system devel-
oped by the Vanderbilt University



CROSSTALK The Journal of Defense Software Engineering 23August 1998

Metrics for Predicting Run-Time Failures and Maintenance Effort: Four Case Studies

directly to their instructors for evalua-
tion [3]. Because the hardware plat-
forms used by students vary, Java was
chosen as the implementation language
for the product. Implemented in a
client-server architecture with clients
for both UNIX and Windows NT
environments, the product defines 29
distinct classes and consists of six pack-
ages that total approximately 6,000
lines of code.

In this study, we examined data
from a maintenance period beginning
with the original installation of the
product and ending with the installa-
tion of the product’s second version.
During this period, no enhancements
were made to the product. Instead,
maintenance consisted mostly of modi-
fications to correct residual faults as
well as design flaws with regard to the
client-server architecture. The source
code was meticulously annotated dur-
ing maintenance to provide accurate
statistics regarding the modifications
made to the source files.

The results of computing the
Spearman rank correlation between the
maintenance data and associated metric
values are shown in Table 1. CDM again
outperformed the other metrics, fol-
lowed by fan-in and response for a class.
Again, the coupling-based metrics were
better predictors of maintenance mea-
sures than intramodule metrics (like
lines of code or cyclomatic complexity)
or inheritance-based metrics (like the
depth of the inheritance tree).

Coupling, Faults, Failures, and
Maintenance
The obvious question is, why are cou-
pling-based metrics in general (and
CDM in particular) such excellent
predictors of run-time faults and cor-
rective maintenance? We believe that in
most software products, a significant
impediment to maintenance is the level
of interconnection between modules;
that is, the coupling between modules.

Consider an arbitrary module M.
Let V denote the value of a coupling-
based metric applied to M. Assume that
this coupling-based metric incorporates
all possible types of coupling between

M and the rest of the product. Then, if
a change is made outside M, V is a
measure of the probability that the
change outside M will require a corre-
sponding change within M. In some
cases, the need for this change within
M will be revealed by the compiler or
linker. However, other types of changes
may be overlooked, especially when a
medium- or large-scale product is de-
veloped by a team. Unless the required
change is made, a run-time failure may
eventually result. This is why coupling-
based metrics in general are good pre-
dictors of run-time failures.

Turning now to maintenance: to fix
a run-time failure requires corrective
maintenance. Thus, a metric that can
predict where a run-time failure is likely
to occur will also be a good predictor of
module-level corrective maintenance
measures like the number of faults or
time to repair faults.

On average, corrective maintenance
occupies less than 20 percent of the
total maintenance effort [1]. However,
coupling also is a good predictor of all
other forms of maintenance, including
perfective and adaptive maintenance.
The reason is that during maintenance
the code is changed, and coupling is a
measure of the likelihood that a change
outside M will necessitate a change
within M, irrespective of the reason for
that change. That is, the value of a
coupling-based metric is a measure of
the probability that M must be changed
as a consequence of any change to the
rest of the product.

Conclusion
We have shown in a set of four case
studies that coupling-based metrics like
the coupling dependency metric
(CDM) are powerful tools for measur-
ing the impact of change. That is, cou-
pling-based metrics are a good way to
predict run-time failures and mainte-
nance measures. u

About the Authors
Aaron B. Binkley is a senior software
developer at Volpe, Brown, Whelan &
Co., a San Francisco-based investment
banking firm that serves companies in the

areas of health care and technology. The
research described in this article was
performed while he was a graduate stu-
dent at Vanderbilt University, where he
obtained a master’s degree in computer
science. His primary research interests
include software quality metrics and
database performance tuning.

Volpe, Brown, Whelan & Co.
One Maritime Plaza
San Francisco, CA 94111
Voice: 415-274-7980
Fax: 415-434-4632
E-mail: aaron_binkley@vbwco.com

Stephen R. Schach is an associate profes-
sor of computer science at Vanderbilt
University. He also is a software engineer-
ing consultant with over 25 years of
computer experience, working with in-
dustry and giving seminars worldwide on
the object-oriented paradigm and soft-
ware metrics. He has published over 90
refereed technical papers. The fourth
edition of his book, Classical and Object-
Oriented Software Engineering, was pub-
lished by McGraw-Hill in August 1998.

Vanderbilt University
Computer Science Department
Box 1679, Station B
Nashville, TN 37235
Voice: 615-322-2924
Fax: 615-343-5459
E-mail: srs@vuse.vanderbilt.edu
Internet: http://www.vuse.vanderbilt.edu/
~srs/

References
1. Schach, Stephen R., Classical and Ob-

ject-Oriented Software Engineering, 4th
ed., McGraw-Hill, New York, 1999
(published August 1998 with a 1999
copyright).

2. Binkley, Aaron B. and Stephen R.
Schach, “Validation of the Coupling
Dependency Metric as a Predictor of
Run-Time Failures and Maintenance
Measures,” Proceedings of the 22nd
International Conference on Software
Engineering, Kyoto, Japan, April 1998,
pp. 452-455.

3. Details of all four case studies can be
found in Technical Reports 97–03
through 97–06, Computer Science
Department, Vanderbilt University,
Nashville, Tenn., 1997 (see http://
www.vuse.vanderbilt.edu/~srs/cdm).


